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Zeros of the Partition Function Using Theorems 
of Ruelle 
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Theorems of Ruelle which provide a technique for finding regions of the 
relevant complex planes free of zeros of the partition function are used to study 
certain Ising spin systems. Of particular interest is the antiferromagnetic triangle 
lattice system with h r 0 and systems having three-body interactions. 
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1. I N T R O D U C T I O N  

Interest in the location of the partition function's zeros (hereafter pfz's) 
began in 1952 with the publication by Lee and Yang (1'2) of two seminal 
papers on phase transitions. Since that time there have been a number of 
important results concerned with this subject. In particular Ruelle, (3'4) 
using the idea of "contractions" introduced by Asano, (5) developed a 
method which enables one to find regions of the complex z plane free of 
pfz's. Here z = exp(2flh) and h is the external magnetic field. 

We shall use Ruelle's methods to analyze Ising spin systems on the 
triangle lattice and other lattices having a triangular structure associated 
with them, e.g., the Kagom6 and Union Jack lattices. Interest in systems of 
this type dates back to 1950 with Houtappel (6) and Wannier (7) and 
continues today especially regarding the systems with antiferromagnetic 
pair interactions; see, for example, Lin and Wu, (8~ and also Doczi-Reger 
and Hemmer, (9) with references therein. Also interest exists in cases having 
three-body interactions present; see, for example, Baxter and Wu, (1~ Wood 

i Department of Physics, Beaver Campus, Pennsylvania State University, Monaca, Pennsylva- 
nia 15061. 

77 
0022-4715/83/1000-0077503.00/0 �9 1983 Plenum Publishing Corporation 



78 Monroe 

and Pegg, (10 Liu and Stanley, (12) and references therein. Both pair interac- 
tion and three-body interaction systems will be considered and in both 
cases ferromagnetic and antiferromagnetic interactions will be considered. 

The purpose of the paper is twofold. First, new uses of the Ruelle 
theorems are shown, e.g., on systems with many-body interactions. Second, 
rigorous statements are obtained concerning the location of the pfz's for 
systems on lattices having triangular structure and from these results 
statements regarding the nonexistence of phase transitions for these lattices. 

In Section 2 the pertinent theorems of Ruelle are presented. Then in 
Section 3 these theorems are used to acquire results on pfz's for Kagom6, 
triangle, and Union Jack lattices having only pair interactions, while in 
Section 4 these same lattices having only three-body interactions are 
studied. 

2. GENERAL RUELLE THEOREMS 

For completeness we now state the theorems of Ruelle (4) that we will 
need in the following sections. Runnels and Hubbard (13) have also restated 
some of these theorems and in addition have pointed out some important 
features regarding their use. 

Let A be a finite set of lattice sites and let P be the partition function 
for A with some given interaction between these sites. A site i is either 
occupied or unoccupied (in spin language S i = _+ 1). Assuming that we 
have a different activity at each site then we have 

e = • e-r II  Zx (2.1) 
X c_A x ~ X  

The main theorem of Ruelle is as follows. 

Theorom 2.1. Let A' and A" be two finite sets of lattice sites and P '  
and P "  be the partition functions for the two sets of sites. It is assumed that 
there exist closed subsets M~ of the complex plane such that 0 ~ 34' and 
P '  v a 0 when 

z x ~ M~ (2.2) 

for all x ~ A'. Similar assumptions hold for P" .  Define 

~, e-BU'(XnA')-~v"(xna"~ II  Zx (2.3) 
X c_A'UA" x ~ X  

p 

Then P v a 0 when 

x ,  

gx ~ tt 

L -  M M;' , 

x ~ A' \A" 

x ~ A" \A '  

x ~ A' fq A" 

(2.4) 
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where 
- M~M~'  = { - z'~z~' : z '  x E M~ and z~' E Mj'  } (2.5) 

We use the terminology of Runnels and Hubbard and call the product 
defined by (2.5) the "set product." The major difficulty with the use of this 
theorem as now stated is that the zi's are independent of each other, 
whereas we normally are interested in the case where all the zi's are equal to 
one another. The regions Mx are much more difficult to find when zi's need 
not be equal to one another. Ruelle's next theorem allows us to set all zi's 
equal in special cases and then find regions free of zeros. 

Theorem 2.2. Let Q ( z )  be a polynomial of degree n with complex 
coefficients and P ( z  1 . . . . .  zn) a polynomial which is symmetric in its 
arguments, of degree 1 in each, and such that 

P ( z , z  . . . . .  z )  = Q ( z )  (2.6) 

If the roots of Q are all contained in a closed circular region M, and 
z i ~ M . . . . .  zn ~2 M ,  then P ( z  1 . . . .  , z , )  v a O. 

A circular region is the inside or outside of a circle or a half-plane. All 
the systems considered in the following two sections have the symmetry 
required by Theorem 2.2. 

3. PAIR INTERACTION SYSTEMS 

In this section we restrict ourselves to the case where only pair 
interactions occur between the spins. Interactions occur between every pair 
of spins of each elementary triangle of the lattice. We define + 2J to be the 
interaction energy between two unaligned spins and zero to be the interac- 
tion energy beteeen two aligned spins. First the case of ferromagnetic 
systems, i.e., J > 0, will be considered and then the more complicated and 
more interesting antiferromagnetic systems follow. 

Proposition 3.1. There are no pfz's on the positive real z axis, i.e., 
the free energy is an analytic function of h, if 

1 log(3) = 0.549 (3.1) for the Kagom6 lattice, 0 < 2 f l J  < 

11o ( ) for the triangle lattice, 0 < 2 f l J  < ~ ~ = 0.203 (3.2) 

1 ( 3 ) = 0 . 1 0 9 ( 3 . 3 )  for the Union Jack lattice, 2 0 < 2 f l J  < ~ log ~/2 + 1 

2 There have been two different types of lattices described as '"Union Jack" lattices. See, for 
example, Domb ( ~4~ or Ternperley (22) for one type and Hin termann and Merlini (15) for the 
other type. Our Union  Jack lattice shown in Fig. lc is the type of Hin te rmann and 
Merlini.( I 5~ 
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Proof. The partition function for the triangle subgroup with a 
exp(2/~J) andyi  = exp(flhi) for i = 1, 2, or 3 is 

_~( l + l y , ~  + , ) l 
+ Yl YEY3 Yl YlY2 Y3 + --YlY2Y3 (3.4) 

multiplying by Yl YzY3 we have 

1 
y l y 2 y 3 e ( z ,  , z 2 , z 3 )  = ZlZ2Z 3 -[- ~ (ZlZ 2 '-[- ZlZ 3 --I- z2z3 )  

+ ~ (z, + ~, + ~,) + l (3.5) 

where z~ = (yi) 2. The right-hand side of (3.5) fulfills the conditions of 
Theorem 2.2 and therefore we need only find a closed circular region M 
containing all the zeros of the following: 

" '  [ ( ' )  l Q ( z ) = z 3 + - ~  + ~ - T z + l = ( z + l )  z2+  ~ - 1  z + l  (3.6) 

In the case of a lattice where each site is in four triangle subgroups as it is 
for the Union Jack lattice (see Figs. lc and lf) we want this closed circular 
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Fig. 1. Parts (a), (b), and (c) are, respectively, the Kagom& triangle, and Union Jack lattices; 
(d), (e), and (f) are respectively the Kagom~, triangle, and Union Jack lattices decomposed 
into their triangle subgroups for systems with pair interactions. 
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region to be contained in the angular region 

3__~ < argz < 5~r (3.7) 
4 4 

This is because to build up the Union Jack lattice from our triangle 
subgroups we will need to use Theorem 2.1 a maximum of three times per 
site. Some sites require only contraction since they belong to only two 
triangle subgroups but it is those sites belonging to four triangle subgroups 
which set the limits of the theorem. These sites will be included in three 
contractions resulting in three set products of the form of Eq. (2.5). After 
these three set products the region of (3.7) becomes 0 < argz < 2~r. 

Since the zeros of (3.6) lie on the unit circle in the z plane the 
requirement of the above paragraph results in needing to find the value of a 
when the zeros of (3.6) are z = - 1  and - (1  + i ) / f i .  This occurs when 
a = [3/(~/2 + 1)] 1/2. For all a's in the interval 1 ~< a < [3 /~ -  + 1)] 1/2 the 
zeros then fall in the region defined by (3.7) and the result (3.3) follows. 

Similar analysis results in the bounds (3.1) and (3.2) though in these 
cases we need only require that M is contained in the regions ~r/2 ~< arg Z 
< 39r/2 and 2~r/3 < a rgZ < 4qr/3, respectively. �9 

Romarks. (a) The result for the triangle lattice was given in Ruelle. (4) 
(b) It is of interest to compare these bounds to the exact values of the 

critical temperature found by duality and similar transformations. See the 
review article by Syozi (16) where it is shown that 

for the Kagom6 lattice, 2flcJ = 0.929 (3.9) 

for the triangle lattice, 2flcJ -- 0.549 (3.9) 

for the Union Jack lattice, 2flcJ = 0.509 (3.10) 

One sees from this comparison that as the number of contractions and 
therefore set products increases the worse the bound on the critical temper- 
ature given by the pfz's approach becomes. 

For lattices with antiferromagnetic pair interactions, replacing the 
ferromagnetic interactions just considered, J ~< 0 and therefore a ~< 1, the 
situation is both more interesting and complex. We will consider these 
systems in two parts. First results similar to those for the ferromagnetic 
system are found, that is, results giving an upper bound on the critical 
temperature for all values of h. For ferromagnetic systems one knows there 
is no phase transition for h =/= 0 but this is not the case for antiferromag- 
netic systems. So in our second part we look explicitly at bounds on the 
critical temperature as a function of h. 

Again the triangle subgroup fulfills the condition of Theorem 2 and we 
need only to find a closed circular region M which is contained in the 
appropriate angular segment. Of course now for the antiferromagnetic case 
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the zeros are no longer on the unit circle in the z plane but on the negative 
real axis. 

Proposition 3.2. There are no pfz's on the positive real z axis, i.e., 
the free energy is an analytic function of h if 

for the Kagom6 lattice, - oo < 2flJ < 0 

for the triangle lattice, 

for the Union Jack lattice, 

3(2-~-) 

I 3 ( ~ - - 1 )  1 -o.122= �89 

(3.11) 

< 2 f l Y <  0 

(3.12) 

< 2 flJ <~ O 

(3.13) 

Proof. Again we start with the Union Jack lattice. The closed 
circular region M must be contained in the angular region of (3.7) for the 
same reasons as stated in the proof of Proposition 3.1. For a 2 = [3(~- - 1)] 
/ [ 3 - ~ - ]  the zeros are z = - 1  and -v~--+ 1. The two lines with argz 
= 3~r/4 and argz = 5~r/4 are tangent to the circle whose center is at 
z = -v~- and whose radius is 1.0. Therefore the circle lies in the proper 
angular sector and the result, (3.13), follows. The other two lattices are 
analyzed in a similar manner. �9 

Remarks.  (a) The results of Proposition 3.2 for the Kagom6 lattice 
can also be proven using a theorem of Heilmann. O7) 

(b) The Kagom6 and triangle lattices with antiferromagnetic pair 
interactions have been shown to have no phase transition at h -- 0. The pfz 
approach above duplicates this result for the Kagom6 lattice but not for the 
triangle lattice. This once again shows that the larger the number of 
contractions necessary to build up the lattice, the less accurate the bound. 

For nonzero values of h the triangle lattice with antiferromagnetic pair 
interactions is still of interest today. It was first conjectured by Domb (14) 
that for h v e 0 a phase transition may exist and that the phase diagl?am has 
the form sketched in Fig. 2. A review of some of the initial approximate 
solutions is given by Burley. (LS) Recent results can be found in Lin and 
Wu, (8) Doczi-Reger and Hemmer, (9) and also Kinzel and Schick. (19) We 
know of no rigorous results on this system for h v e 0. We now use Ruelle's 
pfz method to find regions in the h - T  plane where the free energy is 
analytic. Before we state the results we will need the following lemma. 
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Fig. 2. Conjectured phase diagram for the triangle lattice with nearest-neighbor anti- 
ferromagnetic interactions. 

Lemma 3.3. For a region M which is a half-plane of the z plane 
which crosses the negative real z axis at a point b as shown in Fig. 3, the 
nth set product of the region does not contain the following interval of the 
real z plane: 

[ 1 0 ~<z < cos(~r)(bln + 1)) (3.14) 

Proof. See Appendix A. 

Remark. In the use of Ruelle's theorems by Runnels and Hub- 
bard (13) for hard-core lattice gas systems, similar half-plane regions were 
used. In their determination of the zero-free region of the real z axis they 
were forced to use two assumptions in taking the set product. The above 
does away with a need for these assumptions and eliminates some lengthy 
use of Lagrange multipliers. 

Proposition 3.4. For the triangle lattice one has that for values of J, 
fl, and h such that 

the free energy is an analytic function. 
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The half-plane M containing the zeros of the triangle subgroup partition function. 
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Fig. 4. The solid line denotes the boundary of the zero-free region of the h -  T plane given by 
(3.15), the dotted line gives the zero-free region given by (3.12), and the dot-dash line 
represents Monte Carlo results for the phase diagram. (19) All are for the triangle lattice with 
nearest-neighbor antiferromagnetic interactions. 
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Proof. We decompose the triangle lattice as before into triangle 
subgroups and the partition function we need is again Eq. (3.6). We want to 
find a region M containing the zeros of (3.6) of the form of M in Fig. 3. 
The edge of the half-plane will cross the negative real z axis at the value of 
the maximum zero. This value is denoted as b in Fig. 3 and is given by 

= 1 _ + 3 - 1 )  

Since two contractions on each site are necessary to build up the triangle 
lattice from our subgroup we must have two set products, i.e., n = 2, and by. 
Lemma 3.3 the result follows. �9 

R e m a r k s .  (a) The zero-free regions of the h - T  plane given by 
Proposition 3.4 and that given by Proposition 3.2, are shown in Fig. 4. 

(b) The zero-free region of Fig. 4 can be extended to include the 
reflection of this region about the k T / J  axis because of the symmetry of 
the Hamiltonian. 

4. THREE-BODY INTERACTION SYSTEMS 

We now consider the Union Jack, ti-iangle, and Kagom~ lattices where 
only three-body interactions between the three sites of the triangle sub- 
groups are present along with the interactions with the external magnetic 
field. The author knows of no prior use of the Ruelle theorems to study 
systems with many-body interactions. The initial theorems were not re- 
stricted to pair interactions but the analysis itself may be much more 
complicated than with pair interaction cases. The particular cases consid- 
ered here are only slightly more complicated because we retain the symme- 
try of the partition function necessary to use Theorem 2.2. 

We take as the Hamiltonian for each elementary triangular group of 
the lattice 

3 

H(s~ ,  s 2 , s3) = - J ' s , s z s  3 - ~ h,s~ (4. I) 
i = l  

Propos i t i on  4.1. There are no pfz's on the positive real z axis if 

for the Kagom6 lattice, - oo < f lJ  < ~ (4.2) 

 o.,hetri .o, t.co, log( ) 
for the Union Jack lattice, log( 129 130 

given the Hamiltonian Eq. (4.1) on each elementary triangle of the lattice. 
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Proof. The partition function for the triangle subgroups with Hamil- 
tonian (4. l) is 

l ( 1  ) P(Yl, Y2, Y3) = w y l Y 2 Y 3  -t- W Yl  Y2 "~-Yl Y3 ''}" -~1 Y2Y3 

+ w Yl Y2Y3 Yl Y2 + YlY2 Y3 + W YlY2Y3 

(4.5) 

with w = exp(flJ ' )  and Yi = exp(flhi). As with the pair interaction case the 
partition function rewritten in terms of z i = exp(2flhi) satisfies the symme- 
try requirements of Theorem 2.2 and therefore we need only find a closed 
circular region M containing all the zeros of 

Q(z) = w z  3 -I- 322  "1" 3WZ + 1 (4.6) 
W W 

For both positive and negative values of J there is one zero of (4.6) which 
lies on the negative real z axis. The other two are complex conjugates of 
one another and lie on circles centered at _ i ( 1 / ~ - )  with radius 2/~/'3-. All 
three zeros move in the z plane as a function of flJ, whereas in Section 3 
one zero remained fixed at z = - 1. Therefore (4.6) does not reduce itself to 
a quadratic equation as (3.6) did. We have thus used the computer to find 
the zeros of (4.6). 

Again as in the pair interaction case we need the closed circular region 
M to be contained in the appropriate angular region of the z plane. 
However, these angular regions are not the same as needed for the pair 
interaction systems because the number of contractions necessary to build 
up the desired lattice is not the same, except for the Kagom4 lattice. For the 
triangle lattice we now need five contractions per site (see Fig. 5a), and 
some sites in the Union Jack lattice require seven contractions per site (see 
Fig. 5b). Since for the Kagom6 lattice we only need the zeros to be in the 
left half-plane we have no "phase transition for all finite flJ. The bounds on 
flJ given for the other two lattices are sufficient to guarantee that M is 
small enough to be contained in the proper angular regions. As stated 
above the zeros were found using a computer and then it was proven that 
the three zeros of Eq. (4.6) with flJ values as given in the proposition could 
be contained in a circular region M which itself could be contained in the 
appropriate angular region. �9 

Remarks.  (a) Any lattice which can be decomposed into three site 
subgroups with the three sites interacting via a three-body interaction can 
be treated by this method. This would include the triangulated dice lattices 
considered by Wu, ~2~ and by Liu and Stanley. ~12) These lattices require an 
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even greater number of contractions than those systems considered in 
Proposition 4.1 and once again the bounds become less accurate. 

Considering cases where less contractions are necessary one can use 
the decompositions shown in Figs. le and If to construct triangle and 
Union Jack lattices with three-body interactions amongst only alternating 
triangles of the lattice. 

(b) Bounds on the region of the h - T  plane where no phase transition 
occurs could also be found by the same basic methods as used in Section 3. 

(c) Finally it should be pointed out that systems with interactions other 
than three-body interaction systems can be decomposed into elementary 
subgroups and if they have the symmetry required by Theorem 2.2 can be 

Fig. 5. Part (a) is the triangle lattice decomposed into triangle subgroups for systems with 
three-body interactions; (b) is the Union Jack lattice decomposed for the similar situation. 



88 Monroe 

easily studied using the pfz approach. For example, a four-body interaction 
amongst the four sites of a square subgroup has the required symmetry. 
Such a subgroup can be used to construct the "three-dimensional" Ising 
models with four spin interactions studied by Suzuki. (2~) 
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APPENDIX A 

Proof of Lernma 3.3. For notational simplicity we prove the lemma 
for two set products. The extension to n set-products follows immediately 
from the same method. For one set product we choose any z I E M and 
z 2 ~ M and form - z l z  2. For two set products we choose an additional 
z 3 ~ M and take the product ZlZ2Z 3. The proof now consists of two parts. 

(A) We are only interested in the region of the positive real z axis 
that is not covered by the product z l z 2 z  3. Clearly the interval 0 < z < ib[ 3 is 
not covered by the product, but as we move further out along the z axis we 
will reach a minimum value of z which is covered. Call this minimum value 

' ' and ' are all = ' ' ' = C. We first show that zl, z2, z 3 Zmi n C and assume Z1Z2Z 3 
located on the edge of M. In polar form zj = ~)exp(i@j) f o r j  = 1, 2, and 3. 
For z]z'2z'  3 we must have q'x + q>2 + ~3 = 2~r or 4~r and r~r2r 3 = C.  Now if 
z], z~, and z~ are not all on the edge of M then we could proceed inward 
along a radial line keeping qh + ~2 "1- ~3 ~--- 2~r or 4rr but reducing the value 
of rj for any j where z j  is not on the edge. But then C is not the minimum. 
Hence for the minimum we must have all the z j  on the edge of M. 

(B) We now must show, given part  (A), that qh = ~2 = ~'3 and thus 
q,j = 2~r/3 for a l l j  or 4~r/3 for all j .  Since M crosses the negative z axis at b 
and all t) are on the edge of M, then i) = I b [ / c o s O j  where Oj = ~r - ~ j .  The 
condition on ~l + ~2 + ~3 becomes 01 + 02 + 03 = -+ e. The product z l z 2 z  3 
becomes [b3[ /cos (OOcos(O2)cos (03)  and thus for this to be a minimum the 
product of the cosines must be a maximum. The product can be written as 
-Cos (Ok)cos (Oi )coS(Ok  + Oi) for k = 1, 2, or 3 and i = 1, 2, or 3 but k v e i. 
Since we want the maximum we take partial derivatives and set them equal 
to zero obtaining the following condition: 

tan O k - -  - tan 2 0  i (AI)  

Therefore it follows that O k + 2 0  i = mr.  The restriction on the 0j that 
- ~r /2  < Oj < ~r/2 constrains the n to the values 0 and + 1. The restriction 
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that 01 + 0 2 "[" 0 3 = --I-'/7 e l iminates  the possibil ity of n = O. It also shows  
that O k + 2 0  i = ~" only when  01 + 0 2 + 0 3 = 7r or O k + 2 0  i = - ~r only  when  
0 1 + 0  2 + 0  3 = - ~ r . F r o m t h i s o n e o b t a i n s 0 1 = 0  2 = 0  3 . [ ]  
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